Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene.
نویسندگان
چکیده
Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), is less lipidated than its corresponding AD-benign form, apoE3, and it has been suggested that the pathological effects of apoE4 are mediated by lipid-related mechanisms. ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1, respectively) are the most important apoE-lipidating proteins. The expression of these proteins, as well as that of apoE, is controlled by the transcription regulation retinoid X receptor (RXR)-liver X receptor (LXR) system. In the present study, we investigated the effects of the RXR agonist bexarotene on mRNA and protein levels of apoE, ABCA1, and ABCG1 in young, naive apoE3- and apoE4-targeted replacement mice and assessed the extent to which this reverses the apoE4-driven pathological phenotype. This investigation reveled that bexarotene increases the mRNA and protein levels of ABCA1 and ABCG1 in hippocampal neurons, but has no effect on the corresponding levels of apoE. These findings were associated with reversal of the lipidation deficiency of apoE4 and of the cognitive impairments of apoE4 mice in several tests. Furthermore, bexarotene reversed the apoE4-driven accumulation of Aβ42 and hyperphosphorylated tau in hippocampal neurons, as well as the apoE4-induced reduction in the levels of the presynaptic marker vesicular glutamatergic transporter 1 (VGluT1). In conclusion, the results show that treatment of apoE4 mice with the RXR agonist bexarotene reverses the apoE4-induced cognitive and neuronal impairments in vivo and suggest that this is due to reversal of the lipidation deficiency of apoE4. This puts forward the possibility that RXR activation and increased levels of ABCA1 and ABCG1 could be useful in the treatment of human apoE4 carriers.
منابع مشابه
Comment on "ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models".
Cramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) demonstrated in a mouse model for Alzheimer's disease (AD) that treatment of APP/PS1ΔE9 mice with bexarotene decreased Aβ pathology and ameliorated memory deficits. We confirm the reversal of memory deficits in APP/PS1ΔE9 mice expressing human APOE3 or APOE4 to the levels of their nontransgenic controls and the si...
متن کاملApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models.
Alzheimer's disease (AD) is associated with impaired clearance of β-amyloid (Aβ) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR ...
متن کاملRXR controlled regulatory networks identified in mouse brain counteract deleterious effects of Aβ oligomers
Bexarotene, a selective agonist for Retinoid X receptors (RXR) improves cognitive deficits and amyloid-β (Aβ) clearance in mice. Here we examine if the effect of bexarotene on RXR cistrome and transcriptomes depend on APOE isoform and Aβ deposition. We found bexarotene increased RXR binding to promoter regions in cortex of APOE3 mice. Rho family GTPases and Wnt signaling pathway were highly enr...
متن کاملDifferential Effects of apoE4 and Activation of ABCA1 on Brain and Plasma Lipoproteins
Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brai...
متن کاملBexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy
Stroke is a highly debilitating, often fatal disorder for which current therapies are suitable for only a minor fraction of patients. Discovery of novel, effective therapies is hampered by the fact that advanced age, primary age-related tauopathy or comorbidities typical to several types of dementing diseases are usually not taken into account in preclinical studies, which predominantly use you...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 21 شماره
صفحات -
تاریخ انتشار 2014